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has a smaller  bond-angle  distortion than the other  
materials.  This result is unders tandable  in view of  the 
greater  hardness  of  d iamond,  resulting from an 
increased stiffness of  the tetrahedral  bond angle. The 
bond-bending  force constants  for crystalline 
d iamond,  silicon and germanium are in the ratio 
4.9 : 0-44: 0.37 (Tomassini ,  Amore Bonapista,  
Lapiccirella, Lodge & Al tmann,  1987), as determined 
by fitting lat t ice-dynamical  results from neutron 
diffraction data.  
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Abstract 

The domain  of  validity of  the weak-phase-object  
(WPO) approx imat ion  is evaluated for high-energy 
electrons (100 keV, 500 keV and 1 MeV) scattered by 
crystalline biological macromolecules.  Cytochrome 
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b5 is used as an example  in which calculated dynami-  
cal diffraction intensities are used to simulate 
observed diffraction intensities, which are then com- 
pared with intensities calculated by the weak-phase-  
object approximat ion .  Three criteria of  validity are 
used, namely  the crystal lographic residual (R value),  
the interpretabili ty of  difference Pat terson maps,  and 
the results of  phasing by the heavy-atom isomorphous  
replacement  method.  The present  calculations indi- 
cate that the error  associated with the WPO approxi-  
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mation is quite acceptable up to a specimen thickness 
of 200 A for 100 keV electrons, which is two to four 
times the thickness limit for crystalline organic struc- 
tures with much smaller unit-cell dimensions. An 
equally acceptable thickness limit at 500keV and 
1 MeV is about 300-350/~. 

Introduction 

Electron crystallography, which involves both diffrac- 
tion and direct imaging with very thin crystals, is 
becoming an increasingly important method of struc- 
ture analysis for biological macromolecules (Amos, 
Henderson & Unwin, 1982; Glaeser, 1985). Diffrac- 
tion data up to a resolution of 1 .8A have been 
obtained from a protein crystal (Chiu, 1982), and 
images have been used to obtain accurate phases to 
a resolution of 3-5 ,~ (Jeng, Chiu, Zemlin & Zeitler, 
1984; Henderson, Baldwin, Downing, Lepault & 
Zemlin, 1986). Interpretation of images and diffrac- 
tion intensities for biological materials normally uses 
the weak-phase-object (WPO) approximation. The 
approximation assumes that electron diffraction of 
macromolecules is limited to single scattering. Fur- 
thermore, the approximation assumes a fiat Ewald 
sphere, and thus it is valid only for very high incident 
energy where the electron wavelength is small com- 
pared with the available resolution. However, such 
assumptions can be expected to be increasingly 
invalid for increasingly greater specimen thickness 
and higher resolution. Although there has been some 
theoretical analysis of the limits of validity of the 
weak-phase-object approximation for small organic 
molecules (Ishizuka & Uyeda, 1977; Dorset, Jap, Ho 
& Glaeser, 1979; Jap & Glaeser, 1980) or negatively 
stained protein crystals (Dorset, 1984), there have not 
yet been any published calculations relating to 
unstained crystalline proteins or other macro- 
molecules of similarly complex structure. 

We have carried out dynamical diffraction calcula- 
tions for cytochrome b5 to determine the domain of 
validity of the WPO approximation as a function of 
accelerating voltage, specimen thickness and struc- 
tural resolution. The initial results show that it is 
generally valid to use the WPO approximation to 
interpret diffraction intensities up to a thickness of 
200 A or more at 100 keV, and up to a thickness of 
350/~ at 500 keV or 1 MeV. A new observation made 
in the course of this work is that the dynamical 
calculations produce a systematic redistribution of 
diffraction intensities, even when the specimen thick- 
ness is small enough to produce otherwise only minor 
dynamical effects. This redistribution has an effect 
similar to that of the temperature factor when the 
intensities are displayed on a Wilson plot. The corre- 
sponding 'apparent '  thermal Debye parameters seem 
to reach a limiting value of B which fluctuates 

between 9 and 10 A2. Correction for this 'apparent '  
temperature factor was carried out in all cases. 

Methods 

Cytochrome b5 (Mr = 11 000) was chosen as a model 
structure for our numerical calculations. The structure 
has been determined from X-ray diffraction studies 
(Mathews, Levine & Argos, 1972), and the atom coor- 
dinates are available from the Protein Data Bank of 
Brookhaven National Laboratory. Cytochrome b5 
grows in the orthorhombic space group P2~2~2~, with 
unit-cell dimensions a=64 .54 ,  b=46 .04  and c =  
29.91 ,~. The short c-axis repeat distance was taken 
to be the slice thickness in the computation of the 
diffracted wave, in the multislice formulation. The 
basic theoretical formulation for the multislice 
dynamical theory is as described previously (Cowley 
& Moodie, 1957; Jap & Glaeser, 1978), and the calcu- 
lations were carried out with computer programs 
similar to those used previously for less-complex 
organic structures (Jap & Glaeser, 1980), but with the 
convolution operation being performed by multipli- 
cation in Fourier space. 

Structure factors for crystalline c~,tochrome b5 were 
calculated to a resolution of 0.8 A with the atomic 
structure factors given in parametric form by Doyle 
& Turner (1968). Hydrogen atoms were not included 
in the calculation. All atom positions were assumed 
to be stationary, and no thermal motion or other type 
of structural disorder was incorporated into the calcu- 
lations. The effect of partial occupancy of heavy 
atoms in derivatives was modeled by replacing the 
actual heavy atoms by effective atoms at full 
occupancy whose atomic number was reduced in 
proportion to the fractional occupancy. The projected 
potential which is needed for the multislice dynamical 
calculations was obtained by taking the inverse Four- 
ier transform of the hkO structure factors. 

The use of all diffracted beams to a resolution of 
0.8 A, involving 23 893 beams in the hkO net, ensured 
that a sufficient number of reflections were included 
such that the summed total of the calculated dynami- 
cal diffraction intensities was never less than 0.997 
of the incident intensity, even up to a thickness of 
930,~. All calculations were limited to the case in 
which the incident wave vector is parallel to the crystal 
c axis. Three different accelerating energies, 100, 500 
and 1000 keV, were used in the calculation. Fig. 1 
shows representative examples of diffraction 
intensities calculated at 100 keV for two different 
resolutions, corresponding to Miller indexes of 200 
and 1,21,0, respectively. The corresponding inten- 
sities calculated by using the WPO approximation 
increase as H 2, the square of the thickness. This 
quadratic increase occurs simultaneously for all 
reflections because the Ewald sphere is assumed to 
be flat in the WPO approximation, i.e. the WPO 
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approximation incorporates within it a 'zero- 
wave, length' approximation. The calculated Cowley-  
Moodie diffraction intensities, like the real experi- 
mental intensities, effectively retain the curvature of 
the Ewald sphere. In this case, then, as the specimen 
thickness increases, and the widths of the (kinematic) 
diffraction maxima along the reciprocal-lattice rods 
become smaller and smaller, successive minima and 
maxima must pass through the intersection of the 
stationary curved Ewald sphere and the reciprocal- 
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Fig. 1. The Cowley-Moodie multislice dynamical intensities for 
the 200 and 1,21,0 reflections of cytochrome b 5 are plotted as a 
function of crystal thickness. 

lattice rod. The effect is greatest, of  course, at the 
highest resolution. 

To make our simulation as close as possible to the 
real experimental situation, the dynamical intensities 
were scaled according to the scheme commonly used 
by X-ray crystallographers when scaling together 
diffraction data for both native and heavy-atom- 
derivative protein crystals. This scaling is achieved 
by the use of  Wilson plots (Wilson, 1942). Our goal 
in using the Wilson plot has only been to treat the 
data (i.e. calculated simulations) in the same way that 
would normally be the case for kinematic data, and 
in so doing to establish the limitations of resolution 
and specimen thickness for which such a treatment 
remains valid, up to a specified degree of error. It 
has not been our goal to convert dynamical diffraction 
intensities to (kinematic) structure factors by an 
analysis of Wilson plots, as is proposed in the work 
of Li (1963). It should again be noted that, in our 
calculations of the dynamical intensities, all atoms 
are assumed to be stationary and no thermal disorder 
is introduced in the calculation. 

Results 

The dynamical intensities exhibit an apparent  tem- 
perature factor, as can be seen from the Wilson plots 
shown in Fig. 2 for accelerating voltages of 100 and 
500 kV. For the WPO approximation, in the absence 
of thermal (or other) disorder, the diffraction 
intensities must be scattered about a horizontal line. 
At very small thicknesses, e.g. 30/~, the dynamical 
intensities also show the expected absence of a tem- 
perature factor. However, for a specimen thickness 
of 300/~, the slope of the Wilson plot is quite steep, 
corresponding to an apparent thermal Debye 
parameter B of ---9/~2 for 100 keV electrons and 
- 1 0  A, 2 for 500keV electrons. These numbers seem 
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Fig. 2. Wilson plots for the dynamical electron diffraction intensities calculated for cytochrome b5 at different values of the specimen 
thickness and electron accelerating voltage, as indicated. The notation Y. refers to summation over restricted annular zones in reciprocal 
space, and f~ represents the atomic scattering factors. The slopes and y intercepts of the straight lines are determined as a least-squares 
best fit to the calculated data. 
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Table 1. The 'apparent' thermal Debye parameter, 
B (/~ 2), determined from the slopes in the Wilson plots 

Thickness 
(x29.91/~,) 100 keV 500 keV 1.0 MeV 

1 -0"22 -0-21 -0"21 
2 10"24 0"71 0" 11 
3 6"90 2"47 0"68 
4 9"50 5"54 1-53 
5 7.90 10"19 2"73 

10 8"97 10.17 9.54 
15 9"33 10"35 8"73 
20 9"38 10'42 9'12 
25 9"22 10"40 9"61 
30 9"37 10"49 9"57 

The relation__between B and the root mean square atomic displacement, 
u, is B = 8Tr2u 2. 

to level off at values between 9 and 10 at high thickness 
values, regardless of the accelerating voltage (Table 
1). Such values of the thermal Debye parameter corre- 
spond to an effective r.m.s, atomic displacement of 
0-34-0.36 ~ .  The expected fluctuations in the average 
structure factor for different annular zones in resolu- 
tion are also more pronounced for greater specimen 
thickness (Fig. 2). 

The mathematical or physical basis for the apparent 
temperature factor is not clear. One factor that could 
be involved, but which we have not yet investigated, 
is a direct consequence of curvature of the Ewald 
sphere. If we consider first of all the kinematic case, 
with the incident wave vector perpendicular to the 
plane of a thin protein crystal, the Ewald sphere will 
sample the Fourier transform with progressively 
larger excitation error at increasingly higher resolu- 
tion. The resulting diffraction intensities will therefore 
be progressively weaker than the peak intensities as 
the resolution increases. Qualitatively, the effect just 
discussed should have the same behavior as would 
be produced by a finite thermal Debye parameter. 
A similar effect would not be expected to appear in 
real experimental data, however, because there one 
measures integrated diffraction intensities, for which 
the Ewald sphere has been swept through the finite 
width of the diffraction spot, rather than merely samp- 
ling the Fourier transform for a single incident-beam 
direction. In the dynamical case we can again expect 
to see a ' temperature-factor '  effect arising from cur- 
vature of the Ewald sphere, since the Cowley-Moodie 
formulation does incorporate Fresnel propagation of 
the wave within the finite thickness of the specimen. 
However, the effect in the dynamical case cannot be 
pictured as intuitively as in the kinematic case, 
because the simple Fourier-transform relationship 
between the crystal thickness and the sampled diffrac- 
ted wave is no longer valid. 

In the work reported here it has been impractical, 
in terms of available computer costs, to calculate 
dynamical intensities that have been integrated over 

a significant range of excitation errors. Had we been 
able to do so, we anticipate that the ' temperature- 
factor effect' seen when using Wilson plots would be 
much smaller, or might not even occur. As a practical 
expedient at this stage, all of the calculated dynamical 
diffraction intensities were simply corrected for the 
apparent temperature factor as part of a routine scal- 
ing procedure, before they were then used to calculate 
R factors or difference Patterson maps. 

As a first test for the onset of significant dynamical 
effects, we have computed the R-factor residual 
between the WPO and dynamical diffraction ampli- 
tudes, designated as Fwvo (WPO F) and FCM 
(Cowley-Moodie F) respectively. The R factor was 
calculated using all data up to a limiting resolution 
Smax and is defined by 

Srnax 
Y IlFc'M(h, k ) ] -  SlFwPo(h, k)ll 

R (Smax)  = (h,k) 
Smax 
Y IFcM(h, k)l 

(h.k) 

where the normalization factor N is defined from the 
equation 

N2 = 2 IFcM(h, k)l 2 IFwPo(h, k)l 2. 
(h,k) / ( h , k )  

Fig. 3 shows two representative examples of how 
the R factor increases with thickness, for Sma, = 1/1-4 
and for S m a  x = 1/8.6 ,~-]  at 100 keV, 500 keV and 
1 MeV. 

A family of such curves was then used to define 
the domain of specimen thickness and resolution for 
which the WPO approximation is valid, within certain 
tolerated limits, as determined by different specified 
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o I X ~ . . ;  . t  , , , , l l i : _ 
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Fig. 3. Values o f  the R factor (see text for definition) between 
structure factors calculated for the weak-phase-object  (WPO) 
approximat ion  and the C o w l e y - M o o d i e  muitislice formulat ion.  
As the specimen thickness increases, the R factors increase. Such 
R factors also depend on the resolution limit (cut-oil frequency).  
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values of the R factor. Fig. 4 shows smoothed curves 
that represent the boundaries of the domains of valid- 
ity, for representative values of the R factor. Thus, 
for example, the curves in Fig. 4 show that, in the 
case of 100 keV electrons, the WPO approximation 
is valid to a thickness of 100 A at a resolution of 
about 5 A provided that one can tolerate an R factor, 
due solely to the inadequacy of the WPO approxima- 
tion, of 0-05. If a higher R value can be tolerated, 
then the use of the WPO approximation remains valid 
to a larger thickness for the same resolution. As 
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Fig. 4. The approximate domain of  validity for the WPO approxi- 
mation, using the criterion that the R factor should be less than 
(a) 0.05, (b) 0.10 or (c) 0.20. The various curves in each panel 
correspond to different electron accelerating voltages, as indi- 
cated. 

expected, the domain of validity increases as higher 
accelerating voltages are used. However, the 
difference between 500 keV and 1 MeV is not so sig- 
nificant when compared with the difference between 
100 and 500 keV. 

The scaled dynamical diffraction intensities for 
native and heavy-atom-derivative protein crystals 
were used to generate difference Patterson maps by 
taking the Fourier transform of (F~H--Fp) ~, where 
Fp is the modulus of the structure factor of the protein 
and Fall is the structure-factor modulus of the protein 
plus heavy atoms. Fig. 5 shows the results derived 
using the structure factors limited to 3-5 ~ for the 
electron voltages and thickness indicated. The con- 
tour levels of all the maps were 4, 7, 10, 16, 22, 28, 
34, 40 after the peak at the origin was scaled to 100. 
Clearly, at the smallest simulated thickness the 
difference Patterson maps can be correctly inter- 
preted. However, as the thickness increases, false 
peaks begin to emerge, and the relative values at each 
peak no longer represent the true occupancies. 

The dynamical diffraction intensities for the native 
and heavy-atom-derivative protein crystals were next 
used to phase the hkO reflections. Since this zonal 
projection is centrosymmetric, the phase choice is 
limited to 0 or or. The phases of the native structure 
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Fig. 5. Difference Patterson maps derived from the dynamical 
intensities of  native and heavy-atom-derivative structures at 
various values of  the crystal thickness and the electron voltage. 
For comparison, the autocorrelation map of  the heavy-atom 
potential is shown at the top of this figure. All maps have been 
limited to a resolution of  3"5 ,~, as stated in the text. 
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must therefore be taken to be the same as the phases 
of the heavy atoms alone, whenever the intensity of 
the derivative is larger than that of the native. When 
the intensity of the derivative is less than that of the 
native, then the phase of the native structure must be 
taken to be ~r plus the phase of the heavy atoms. The 
phases deduced in this way were compared with the 
correct phases, which are known from the model 
structure. 

The results obtained in this phasing procedure are 
shown in Fig. 6. The upper three curves show the 
percentage of beams that are assigned wrong phases 
as a function of thickness, and the lower three curves 
represent the sum of their associated intensities as a 
percentage of the total diffracted intensity. For 
100 keV electrons, at a thickness of 150 A, about 10% 
of the diffracted beams were assigned the wrong 
phase. The 10% error rate occurs at about 240 A for 
500 keV and 1 MeV. 

Discussion 

The absolute accuracy of the present theoretical com- 
parison is necessarily compromised by the decision 
to use a 30 ,~ slice thickness to calculate the dynamical 
diffracted waves. The principal reason for using the 
c-axis repeat distance as the slice thickness was to 
simplify the computation in order to reduce the com- 
puting costs. In addition to this practical consider- 
ation, however, we note that earlier calculations for 
simpler organic structures had already indicated that 
the kinematic approximation would be quite accurate 
for a specimen thickness of at least 50 A (Jap & 
Glaeser, 1980; Dorset et al., 1979). Thus it seems 
plausible to argue that the multislice formulation is 
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Fig. 6. The number of reflections that are assigned the wrong phase 
and their associated total intensities, as a precentage of all 
d i f f r a c t e d  b e a m s  i n  t h e  (hkO) p l a n e ,  u p  t o  2 A r e s o l u t i o n .  

not needed to describe wave propagation through the 
30 A of organic material involved in our present 
problem. We would like to point out that the use of 
too great a slice thickness is likely, if anything, to 
overestimate the dynamical effect, since it underesti- 
mates the 'spreading' of the diffracted wave due to 
the coupling of Fresnel propagation and multiple 
scattering. 

The results obtained in this work support the com- 
monly held view that the WPO approximation pro- 
vides a sufficiently accurate representation of elec- 
tron-specimen interaction at 100keV for thin 
unstained macromolecules. For specimens that are 
much thicker than 200 A, however, the calculations 
indicate that substantial errors may arise from the 
use of the WPO approximation. The specimen thick- 
ness at which the WPO approximation can be safely 
used is increased by roughly a factor of 1.5 by going 
to high voltage. 

The estimation of the number of phasing errors in 
Fig. 6 is intended to give only a rough idea of the 
thickness at which failure of the WPO approximation 
alone is likely to introduce a serious problem. A more 
accurate simulation of the limitations that will apply 
to phasing with real data would require that one also 
take into account the errors that arise when interpret- 
ing the difference Patterson function. As a preliminary 
guide, however, the results shown in Figs. 5 and 6 
confirm the point that dynamical effects will not cause 
serious errors in interpretation up to a specimen thick- 
ness of 200~  at 100keV, and up to a specimen 
thickness of 350A at 500keV or 1 MeV. A more 
sensitive test of the phasing problem would also 
require an examination of reflections in a non- 
centrosymmetric section of the reciprocal lattice. A 
quantitative evaluation of phasing errors that would 
result from the distorted Patterson function, and an 
investigation of non-centrosymmetric zones both rep- 
resent important areas in which further investigation 
of the validity of the weak-phase-object approxima- 
tion can be carried out. 

By using the zero-wavelength approximation, an 
inherent discrepancy other than that associated with 
the single-scattering approximation exists between 
the WPO intensities and dynamical intensities, 
because the curvature of the Ewald sphere is not 
accounted for in the WPO approximation. Thus, for 
example, the domains of validity determined here do 
not provide completely accurate estimates for the 
limitations on the validity of the kinemat ic  approxi- 
mation. The domain of agreement between the kine- 
matic approximation and dynamical theory should 
be at least as great as that of the WPO approximation. 
In particular, when curvature of the Ewald sphere is 
taken into consideration, high-resolution diffraction 
intensities will not increase quadratically with the 
thickness, as in the WPO approximation. Instead, 
they will reflect the progressive narrowing of the shape 
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function at reciprocal-lattice points, a result that can 
even cause the intensity to fall to zero when the Ewald 
sphere intersects a zero in the shape (thickness) trans- 
form. The same sort of effect is also built into the 
Cowley-Moodie formulation of dynamical theory, 
through inclusion of Fresnel wave propagation from 
one plane of the specimen to the next. Of course, the 
net effect in the dynamical case can be much more 
complex than in the kinematic case, even to the extent 
that the concept of the crystal shape (thickness) trans- 
form is no longer applicable. Detailed calculations 
of how the domain of validity of the kinematic theory 
is improved over that of the WPO approximation lie 
outside the scope of this preliminary investigation, 
in which we wish only to define a conservative esti- 
mate of the specimen thickness at which electron 
diffraction from protein crystals could be safely inter- 
preted in terms of single-scattering theory. 

The results of our present calculations are quite 
encouraging in that they show that the WPO approxi- 
mation will be valid for proteins at significantly 
greater thicknesses than were found previously for 
simpler organic materials. For example, our previous 
calculation for anhydrous cytosine and for disodium 
4-oxypyrimidine-2-sulfinate hexahydrate indicated 
that the thickness limitation would be two to four 
times less for small organic molecules than it is now 
found to be for a large complex protein molecule. 
This effect is not surprising, since a small unit cell in 
the beam direction, as occurs in the case of a simple 
structure, results in the precise superposition of 
atomic potentials as the thickness increases. When 
the projected potential in this way becomes too great, 
then the WPO approximation must necessarily fail. 
Of course, it is only the local deviations from the 
average projected potential (the 'inner' potential) that 
are important in determining the failure of the weak- 
phase-object approximation. In the case of a more 
complex structure, like a protein, the atomic poten- 
tials superimpose more or less at random, and it takes 
longer for the projected potential to exceed the limita- 
tions of the weak-phase-object approximation. 
Although this qualitative argument was expected to 
hold in advance, it was still necessary to do the actual 
calculations in order to determine the quantitative 
difference in specimen thickness at which the WPO 
approximation could be safely applied. 

The results of our calculations have been further 
encouraging in that the thickness limitation of the 
WPO approximation corresponds rather closely to 
the finite thickness that one must in any case use for 
high-resolution imaging in order to keep within the 
depth of field ofthe objective lens. As a rule of thumb, 
the acceptable depth of field is given by 

A Z  = d2/2A, 

where d is the resolution and A is the electron 
wavelength. At 3 A resolution, A z  = 120 A at 100 keV, 
300 A at 500 keV, and 500/~ at 1 MeV. Thus, it is a 
fortunate coincidence that it would be of no advan- 
tage in high-resolution imaging of proteins if the 
single-scattering approximation were valid to sig- 
nificantly greater thicknesses than has been deter- 
mined in our calculations. The finite depth of field 
that exists for experimentally realistic accelerating 
voltages would, in any case, limit the specimen thick- 
ness to values quite similar to the ones that are 
apparently set by dynamical interaction effects. For 
the purpose of macromolecular crystallography, elec- 
trons in the intermediate high-voltage range, greater 
than 100 kV but less than 1 MV, seem to represent an 
optimum match in having as strong a scattering inter- 
action as possible, in order to get a high yet directly 
interpretable level of image contrast, while having a 
sufficiently short wavelength to give a sufficiently 
large depth of field. Lower-energy electrons would, 
of course, restrict the specimen thickness due to 
dynamical effects and due to the depth of field; 
higher-energy electrons would increase the depth of 
field (without limit) but the limit due to dynamical 
effects cannot increase by any significant amount, 
owing to the relativistic limit on the electron velocity 
(Cowley, 1975). 
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